Isum 2017
March 5 - 9  2018
HOTEL HYATT REGENCY
Mérida, Yucatán, México
9th International Supercomputing Conference In Mexico
Creating an Insightful World through Supercomputing

 

 
 
 
 
Ir a facebookir a twittermandar un correo
 

 

Taller 1: Introduction and Limitation of Deep Learning

Español

Instructores:

  • Ulises Moya Sánchez, BSC/UAG
  • Ulises Cortés, BSC

Resumen
This course presents an introduction of the bases and practices of Deep Learning (DL). We will focus in  Convolutional Neural Networks for  image classification in large datasets in  the hands-on session.
 
Contenido

  1. Introduction to Neural networks and Deep Learning.
  2. Understand the relations and differences between shallow and deep nets.
  3. Main characteristics  and  DL  net selection (Boltzmann machines, convolutional nets,  recurrent nets).
  4. Application and use cases  of DL methods.
  5. Convolutional neural networks application: CNN architectures, Training, fine tuning and regularization (Hands on session)
  6. Parallel computing tools for DL (Data augmentation)
  7. DL limitations (noise, size, overfitting).

Referencias:
Textbook
Ian Goodfellow and Yoshua Bengio and Aaron Courville
Deep Learning
MIT Press 2016
http://www.deeplearningbook.org

Software
Keras (as wrapper) on TensorFlow
https://keras.io/